Research Topic
Our research is focused on investigation of molecular mechanisms, which control the energy metabolism of fat, skeletal muscle, and liver cells, and mediate the crosstalk between these metabolically active tissues. We are searching for new strategies to increase their metabolic activity, with a primary aim to promote energy expenditure and improve metabolic health of human. Nowadays, we are facing obesity pandemic, which affects life quality and health of more than one billion people worldwide, as it leads to development of severe chronic disorders such as type 2 diabetes, non-alcoholic steatohepatitis, or cardiovascular disease.
We are particularly interested in (i) investigation of brown adipose tissue and alternative thermogenic mechanisms, as well as in (ii) elucidating the pathogenesis of non-alcoholic steatohepatitis at the level of individual cell types and populations. For investigation of cellular metabolism, we utilize cell lines, mouse models, genetic and pharmacological tools, and state-of-the art techniques, such as next-generation RNA sequencing, metabolomic analysis, CRISPR-Cas9 gene editing, which allow us to study metabolic processes at the level of individual molecules. We are interested also in their role in regulation of physiological processes at the level of complex organism.
Our research is based on long-term and very productive collaborations with clinical partners from Faculty of Medicine and University hospital of Comenius University in Bratislava, and with top research teams abroad (ETH Zürich, Switzerland), which allow us to investigate mechanisms relevant for human on cellular and genetic mouse models, with potential to apply our findings in clinical praxis.
Our long-term goal is to identify novel therapeutic strategies for treatment of obesity and associated metabolic disease.
Head of the Research Group
Dr. Miroslav Baláž earned his PhD in Animal Physiology from Comenius University in Bratislava (2014). He spent seven years at ETH Zurich, where he contributed to the identification of several molecular mechanisms and subpopulations of adipocytes regulating adipose tissue metabolism. His work has been published in leading journals such as Nature, Nature Medicine, and Cell Metabolism. At BMC SAS, he investigates cellular energy metabolism mechanisms to develop treatments for diabetes, obesity, and fatty liver disease.